70 research outputs found

    Efficient Certificateless Online/Offline Signature

    Get PDF
    Abstract Public key cryptography usually is computationally more expensive than symmetric key systems. Due to this low power or resource constrained devices cannot make use of public key cryptosystems easily. There is a need for high security in these devices since many of these devices perform complex tasks which includes interaction with third party cloud infrastructures. These cloud infrastructures are not trusted entities. Hence there is need for light weight public key cryptography which are secure against these cloud administrators. The trusted entity in certificateless schemes cannot compromise the security of the users. Online/offline have two parts, first the computationally heavy part(offline) of the cryptosystem and then the main "online" algorithm for use on resource constrained devices. The heavy computations are done in the offline phase on a more powerful device. Hence, Certificateless online/offline schemes are perfect for low power devices interacting with clouds. In this paper, we present a certificateless online/offline signature scheme. This scheme is the most efficient certificateless signature scheme in existence and also has the added advantage of being online/offline. The scheme is proven secure in the random oracle model

    Identity Based Online/Offline Signcryption Scheme

    Get PDF
    Online/Offline signcryption is a cryptographic primitive where the signcryption process is divided into two phases - online and offline phase. Most of the computations are carried out offline (where the message and the receiver identity are unavailable). The online phase does not require any heavy computations like pairing, multiplication on elliptic curves and is very efficient. To the best of our knowledge there exists three online/offline signcryption schemes in the literature : we propose various attacks on all the existing schemes. Then, we give the first efficient and provably secure identity based online/offline signcryption scheme. We formally prove the security of the new scheme in the random oracle model \cite{BellareR93}. The main advantage of the new scheme is, it does not require the knowledge of message or receiver during the offline phase. This property is very useful since it is not required to pre-compute offline signcryption for different receivers based on the anticipated receivers during the offline phase. Hence, any value generated during the offline phase can be used during the online phase to signcrypt the message to a receiver during the online phase. This helps in reducing the number of values stored during the offline phase. To the best of our knowledge, the scheme in this paper is the first provably secure scheme with this property

    The Exact Security of a Stateful IBE and New Compact Stateful PKE Schemes

    Get PDF
    Recently, Baek et al. proposed a stateful identity based encryption scheme with compact ciphertext and commented that the security of the scheme can be reduced to the Computational Bilinear Diffie Hellman (CBDH) problem. In this paper, we formally prove that the security of the stateful identity based encryption scheme by Baek et al. cannot be reduced to the CBDH problem. In fact, we show that the challenger will confront the Y-Computational problem while providing the decryption oracle access to the adversary. We provide the exact and formal security proof for the scheme, assuming the hardness of the Gap Bilinear Diffie Hellman (GBDH) problem. We also propose two new stateful public key encryption scheme with ciphertext verifiability. Our schemes offer more compact ciphertext when compared to all existing stateful public key encryption schemes with ciphertext verifiability. We have proved all the schemes in the random oracle model

    Security Weaknesses in Two Certificateless Signcryption Schemes

    Get PDF
    Recently, a certificateless signcryption scheme in the standard model was proposed by Liu et al. in \cite{LiuHZM10}. Another certificateless signcryption scheme in the standard model was proposed by Xie et al. in \cite{WZ09}. Here, we show that the scheme in \cite{LiuHZM10} and \cite{WZ09} are not secure against Type-I adversary

    CCA2 Secure Certificateless Encryption Schemes Based on RSA

    Get PDF
    Certificateless cryptography, introduced by Al-Riyami and Paterson eliminates the key escrow problem inherent in identity based cryptosystem. In this paper, we present two novel and completely different RSA based adaptive chosen ciphertext secure (CCA2) certificateless encryption schemes. The new schemes are efficient when compared to other existing certificatless encryption schemes that are based on the costly bilinear pairing operation and are quite comparable with the certificateless encryption scheme based on multiplicative groups (without bilinear pairing) by Sun et al. \cite{SZB07} and the RSA based CPA secure certificateless encryption scheme by Lai et al. \cite{LDLK09}. We consider a slightly stronger security model than the ones considered in \cite{LDLK09} and \cite{SZB07} to prove the security of our schemes

    Deterministic Identity Based Signature Scheme and its Application for Aggregate Signatures

    Get PDF
    The revolutionary impact offered by identity based cryptography is phenomenal. This novel mechanism was first coined by Adi Shamir in 1984. Since then, several identity based signature schemes were reported. But surprisingly, none of the identity based signature scheme is having the property of determinism and does rely on bilinear pairing. We think positively in answering this long standing question of realizing deterministic identity based signature in composite order groups and we succeed in developing a signature scheme based on RSA assumption and is deterministic. It is indeed helpful in devising variants of signature primitive. Fully aggregateable identity based signature schemes without prior communication between the signing parties is an interesting issue in identity based cryptography. It is easy to see that deterministic identity based signature schemes lead to full aggregation of signatures without the aforementioned overhead. The major contribution of this paper is a novel deterministic identity based signature scheme whose security relies on the strong RSA assumption and random oracles. Based on this newly proposed deterministic identity based signature scheme, we design an identity based aggregate signature scheme which achieves full aggregation in one round. We formally prove the schemes to be existentially unforgeable under adaptive chosen message and identity attack

    Cryptanalysis of Certificateless Signcryption Schemes and an Efficient Construction Without Pairing

    Get PDF
    Certificateless cryptography introduced by Al-Riyami and Paterson eliminates the key escrow problem inherent in identity based cryptosystems. Even though building practical identity based signcryption schemes without bilinear pairing are considered to be almost impossible, it will be interesting to explore possibilities of constructing such systems in other settings like certificateless cryptography. Often for practical systems, bilinear pairings are considered to induce computational overhead. Signcryption is a powerful primitive that offers both confidentiality and authenticity to noteworthy messages. Though some prior attempts were made for designing certificateless signcryption schemes, almost all the known ones have security weaknesses. Specifically, in this paper we demonstrate the security weakness of the schemes in \cite{BF08}, \cite{DRJR08} and \cite{CZ08}. We also present the first provably secure certificateless signcryption scheme without bilinear pairing and prove it in the random oracle model

    Identity Based Public Verifiable Signcryption Scheme

    Get PDF
    Signcryption as a single cryptographic primitive offers both confidentiality and authentication simultaneously. Generally in signcryption schemes, the message is hidden and thus the validity of the ciphertext can be verified only after unsigncrypting the ciphertext. Thus, a third party will not be able to verify whether the ciphertext is valid or not. Signcryption schemes that allow any user to verify the validity of the ciphertext without the knowledge of the message are called public verifiable signcryption schemes. Third Party verifiable signcryption schemes allow the receiver to convince a third party, by providing some additional information along with the signcryption other than his private key with/without exposing the message. In this paper, we show the security weaknesses in three existing schemes \cite{BaoD98}, \cite{TsoOO08} and \cite{ChowYHC03}. The schemes in \cite{BaoD98} and \cite{TsoOO08} are in the Public Key Infrastructure (PKI) setting and the scheme in \cite{ChowYHC03} is in the identity based setting. More specifically, \cite{TsoOO08} is based on elliptic curve digital signature algorithm (ECDSA). We also, provide a new identity based signcryption scheme that provides public verifiability and third party verification. We formally prove the security of the newly proposed scheme in the random oracle model

    Certificateless KEM and Hybrid Signcryption Schemes Revisited

    Get PDF
    Often authentication and confidentiality are required as simultaneous key requirements in many cryptographic applications. The cryptographic primitive called signcryption effectively implements the same and while most of the public key based systems are appropriate for small messages, hybrid encryption (KEM-DEM) provides an efficient and practical way to securely communicate very large messages. Recently, Lippold et al. \cite{GCJ09} proposed a certificateless KEM in the standard model and the first certificateless hybrid signcryption scheme was proposed by Fagen Li et al. \cite{LST09}. The concept of certificateless hybrid signcryption has evolved by combining the ideas of signcryption based on tag-KEM and certificateless cryptography. In this paper, we show that \cite{GCJ09} is not Type-I CCA secure and \cite{LST09} is existentially forgeable. We also propose an improved certificateless hybrid signcryption scheme and formally prove the security of the improved scheme against both adaptive chosen ciphertext attack and existential forgery in the appropriate security models for certificateless hybrid signcryption

    Identity Based Deterministic Signature Scheme Without Forking-Lemma

    Get PDF
    Since the discovery of identity based cryptography, a number of identity based signature schemes were reported in the literature. Although, a lot of identity based signature schemes were proposed, the only identity based deterministic signature scheme was given by Javier Herranz. This signature scheme uses Schnorr signature scheme for generating the private key of the users and uses BLS short signature scheme for generating users signature. The security of this scheme was proved in the random oracle model using forking lemma. In this paper, we introduce a new identity based deterministic signature scheme and prove the security of the scheme in the random oracle model, without the aid of forking lemma. Hence, our scheme offers tighter security reduction to the underlying hard problem than the existing identity based deterministic signature scheme
    • …
    corecore